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THE DEFLECTION OF A CONTINUOUS BEAM PRODUCED
BY THE VERTICAL MOTION OF A SUPPORT POINT

ABSTRACT

The elastic curve for a uniform continuous beam, simply re-
strained to have zero deflection at four or more equidistant points,
satisfies a second order linear finite difference equation. The
general solution for the elastic curve is found to be the sum of a
decreasing wave and an increasing wave. By a combination of these,
the elastic curve produced by moving any one support point is obtained,
including the cases where the support point which is moved is at one
end or near one end, These results are useful in obtaining a logical
procedure for correcting supersonic nozzles.




support points, the right member of equation (1.1) is a linear function
of x. Hence,

Theorem 1. The deflection y is continuous with continuous sl

and curvature (y'

DERIVATION OF THE DIFFERENCE EQUATION

Let the dsflection of the beam be zero at four successive support
points, P,, Py, P3, P, and take individual axis systems (x,, yi) for

the three included segments of the elastic curve,

Figure 1

Then, since sach segment is a cubic which vanishes at its origin,
the equations of these segments are

1

Continuity at P2, P3, and Ph gives three squations found by letting
x, =1,
i

- x 2 -1
Aixi,*Bix:l. *cixi,i 1, 2, 3

A2+Bz+02'0

A3+ B3+ 03 =0
Continuity of y!' and y" at P, and P3 give
M + 2 *+0 =G

3A2+282+02-03

(2.2)

'6A1 + 281 - 232

6A2 + 282 - 283
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These seven equations for nine unknowns leave two degrees of
freedom. The elastic curve would be completely determined, for example,
if the slopes were prescribed at both ends Pl and Ph' From seven equa-

tions we can eliminate six unknowns and obtain a single equation in the
remaining three. In this manner, it is found as a consequence of the
seven equations (2.1) and (2.2) that

(2-3) A1+M2+A3-0
Bl+h32483-0
cl+hc2+03-o

Since the moment is
My

and hence the moment at x; » 0 is M, = 2B,EI, it follows that

H1+hnz+u3-o

which is the well-known “three-moment equation". Similarly, by letting
x, = 1, we get

My + 1My + ) =0

- Ezyi" = EI(6A,x, + 2B,)

Y.
" |._ v, Yy

— N\
x+1 _—___.I

x+2

Figure 2
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If we form the function
(2.4) y(x+2) + ly(x+1) + y(x)

involving heights at corresponding points in three successive segments,
this may be written

y3(b)+ Ly,(b)+ y,(b) = (Az+ LA+ A.l)b34 (B,+ LB, + Bl)b2+ (c3+ LC,*+C; )b

which vanishes on account of equations (2.3) for all values of b in the
range 0 € b'%€1, Hence, the expression (2.L) is zero for any x in the

interval P1 - P2.

Since y(x) is of class C", the first and second derivative of the
expression (2.4) also vanishes. Moreover, if the elastic curve has
zero deflection at more than four successive support points, it is
evident that the same expressions vanish everywhere on any portion of
the elastic curve in this region. Hence, we get

Theorem 2. If a unifarm continuous beam is sim%éz supported at
the su@rt goints X*= a 1*1: e o o a+pn with n®3, and has zerg
eflection at a ese support points, then the deflection y(x) satis-
TYes the Iinite dillerence equation
(2.5) y(x+2)+ Ly(x+1)+ y(x) = 0

in the closed interval a<x%a+n.

Figure 3

Since y(x) is of class C" in this interval, equation (2.5) may be
differentiated twice to yleld the results:

Theorem 2a. The functions y', y" and hence the slopes, curvatures

and moments satisfy also the same difference equation.
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SOLUTION OF THE DIFFERENCE EQUATION

It is intuitively evident that the elastic curve of n (23) segments
through n + 1 support points where the deflection is zero is uniquely de~
termined by prescribing slopes at both ends; hence, there is a two-para-
meter family of such elastic curves. Let us investigate how this appears
mathematically. The difference equation

-

y(x+2) + Ly(x+1) + y(x) = 0
may be solved by letting
y(x) = %,
whence y(x+1) = g1 - g% B By(x)
y(x+2) = p52 = g% 2 = pPy(x)

The difference equation then becomes

(3.1) pe+lg+1=0

vwhich has the two roots
p=-2+V3=-1/(2+/3)=-0.26795
1/ = =343 = -1/(2 - V3) = -3.7320

“The solution of a linear homogeneous difference equation is not
unique. For it is easy to check that if P(x) is any periodic function
of period unity,

, P(x+1) = P(x)
and if y = f(x) is a solution of the difference equation
y(x+2) + Ly(x+1) + y(x) = O

¥ = P(x) . £(x) is also a solution. (This is the analog to
the theorem in linear homogeneous differential equations that any conatant
times a solution is a solution).

then

When this result is applied to the continuous beam problem in gy
interval, a£x%a + n, we conclude that the solutions y(x) = P(x)p* or

P(x)/B must be cubics in any segment between successive intergers.
We therefore get the result:

Theorem 3. In any interval of n segments (n=3) of an elastic curve
where the deflection vanishes at every support poinf, the derléction 18

e ON 0l an INcreasing “waver, (X)), a

re)
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decreasing "wave" with y(x+l) = -(1/B)y(x).

y7(x)

Figure 4

General solution is CIyI(x) + CIIyII(x).

Since |5| = 1/l approximately, the decreasing "wave" decays to
about 0.1% of its initial amplitude in five intervals, and hence can
be considered to vanish for most engineering applications in five or
less intervals.,

THE TWO FUNDAMENTAL SOLUTIONS

It is convenient to make use of two solutions for the semi-in-
finite beam with zero deflections at the support points x = 1,2,3, ....s
and decaying toward infinity. The first fundamental solution has zero
deflection and unit slope at x ='0 (Figure 5a), while the second has
unit deflection and zero slope at the origin (Figure 5b). It will be
found that the solutions of particular problems can be built up from
these fundamental solutions and their reflections, (Figures %c and 5d.).

10
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The first fundamental solution satisfies the difference equation
over the entire range 0 £x<@ and hence is completely determined after
we find the function G for thezfirst segment O x <1, The succeeding
segnents are the curves B G, B~ G, etc. Thus, the deflection, slope,
and curvature at the right end of G are: § times their initial wvalues
to give continuity of these functions at x = 1.

Hence the cubic for G,
v Ax3 + Bx2 +Cx + D,
satisfies the initial conditions
y(0) =D =0
y(0)=c=1
and the continuity conditions at x = 1 (after inserting values of C,D)
A+B+1=0
3A+2B+1=8
6A + 2B = 2BB

These three equations are linearly dependent; the solution of any pair
gives

(L.1) G=(V3-1) 2 -V3x°+x

The second fundamental solution (Figure S5b) satisfies the difference
equation to the right of x = 1, so that the elastic curve to the right
of x =1 is known to be - g G, where - g is the slops at x = 1. Thus for
the function H, ‘

Y"AJ?"'BX2*CX+D
we have from initial conditions

y(0) =D =1

y'(0) =c =0
From continuity with =g G at x = 1 (inserting values of C,D)

y(1) = A+B+1 = -gG(0) = 0

yl(l) - 3A+2B - -gG'(O) = =g

y* (1) = 6A+2B = gG"(0) = 2gV3
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By solving these we find that

(4.2) : h=(V3-L2-GY3-32%+1
and that
(L.3) g=6-3y3=-3p

To find the reflected functions G and H referred to axes at their
left ends for convenience, it is only necessary to replace x by
(1 - x) in 4.1 and L.2.
We get
Ul T(x) = 6(2ex) = (-V3 + D2 + (2V3 - 3)2 + (2 -{3)x

(L.5) H(x) = H(1-x) = ~(3Y3 = L)2 + (6V3 - 9)x° + (6 -~ 3¢3)

Putting the coefficients in decimal form, we have the equations
G(x) = 0.73205% - 1.73205%° + x
H(x) = 1.19615% - 2.19615x° + 1

B = «0.26795
g = 0.80385 = -H'(1)

Larger graphs of the functions G and H are given at the end of
this report.

12
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APPLICATION TO SEMI-INFINITE BEAM
A. End of semi-infinite beam given a deflaction h and a slope A\

L
h
T

Figure 6

The function
y = hi(x) + \G(x)

is easily seen to be the solution here, where H, G are extended beyond
x = 1, as in Figure 5a and b. The slope at x = 1 is hH'(1)*\G'(1) = 3ph + B,
hence, the second segment of Fig. 6 is (3h+#A)BG, and the nth segment is

(3n+2) g% 1a,

When any other jack than the end jack %ﬂ moved in the semi-infinite
plate, the plate shape is the sum of a zero " order approximation, curve
(0), and a first order correction, curve (1). Curve (0) is the elastic
curve which would be obtained in an infinite plate extending over the
range - 00&x <M 3 curve (1) is the reflection of this curve at the fixed
end x = O. In the case of a finite length plate, treated in the next
section, the zero®? approximation, curve (0), is again the elastic curve
for an infinite plate; to this must be added an infinite number of re-
flections of curve (0], reflected from both ends of the actusl finite
plate. *.




SEMI-INFINITE BEAMS

B. End of beam fixed at zero slope, support point at x = 1 raised
by h units.

(0)

Figure 7

Curve (0) 1s composed of the fundamental solution H multiplied by the
ordinate h._starting at x = 1 and decaying to the right; the reflection
function h B extends to the left of x = 1 to the origin.

Curve (1) 1s -AG_ starting from the origin with a slope opposite
that of curve (1), where A = hg,

The sum of curves (0) and (1) is the complete solution.

Referred to axes at the left end of each segment, the equations
of the successive segments in the solution are

y; = h[H(x)) + 3p0(x))]

v, = b [H(x)) + 38%(x,)))

y3 = b [30148%)p0(x,)] ‘

yh - pyBs

Yo ® pn‘3y3" h 38°2(24p%)0, for nx3.

. Clearly curve (1) can be considered to be the left wave hH
of curve (0) "reflected® at x = O.

1
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SEMI-INFINITE BEAMS

C. Left end of beam fixed, support at x = 2 raised by height h.

2
(1) 3B 553, 3ptng 38°n0

Figure 8

The solution is the sum of curves (0) and {(1).

Again, curve (1) can be considered as the zreﬂection of the “wave"
to the left of the origin in figure (8).

Successive segments referred to their own axis systems
¥, = 38n(GHo)
y.;, = h(H+3p%0)
75 = b(as3pa)
7, = mp(aspya
yn-ﬁ“'l‘yh, B=56 c00n.

15
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SEMI-INFINITE BEAMS

D. Support at x = 3 raised.

70 \/ '\j
3 hG 3gh6 3gha
(1) .
lt_—-_?k‘:bqg—q-——-—i,

Successive segments
7, = 3n(p%G+p%0)
Y, = In(gplo)
3 = hﬂ-!*-psG)
y), " h(H+p6G)
g = 31,

v, - po-5

16
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FINITE BEAM PROBLEMS WITH FIXED ENDS

i

AN

(/244

77/

(0)

(2)

(3)

(L)

(5)
(6)

ok

>

p
g >
P mmme——
L
g B
5 56
&——a‘
6
5
‘=?==.4.%7
Figure 10

V4

for the powers of
B shown on the curves

§Common multipliérs
(1), (2), (3), ....

3nG
3hG

3hG

3hG
3hG

3hG

f&A -




Curve 1 is the first reflsction from the left of curve 0; the sum
of these satisfies the zero slope condition on the left, tut not on the
right. When the reflections 2 and 3 from the right of cyrves 0 and 1
are added on, the zero slope condition is satisfied on the right, btut
not on the left. When the infinite series of reflections back and forth
are added, ths exact solutions are obtained.

vy = BGx) + 3 [aepPepbesde L Date)e (pepdefe L L B(xy)]
= 1l(x)) + 3pn(G+£8)/(1-8%)

This illustrates a property which will be found to be true for
fixed end beams with any number of spans:

Theorem: The four terms in the reflections
span will always be the first terms in four geometric series of ratio
EZn where n is the number of spans. Since

A+hr v ar e ar® o oL L= 8/Qor), for |rl<l

it is only necessary to add the zer'o"‘h order curve plus 1/(1-] 2n
The sum of the first four reflection curves 1, 2 in ord

the sxact solution.

The second segment of the beam is found by adding its zeroth order

term +JA1 - B ) times the terms in the reflections 1, 2, 3, and k. In
terms of its own coordinate system.

7, = hil(x,) + 30 [(B+B%)0(xy) + (1067)0(x,) ]| /C2-p%)
or

p = H(x) + 36 [po(x,)Bxy) | /2-2).




b.

Three-Span beam

wm

FINITE BEAMS

/127

il

h
Y4
/7717 -
3BhG
2
( ;T
B p°
B , 5 ﬁh
6 B7
8 9
p e N }
Figure 11

Common multipliers

3he

3hG

3hG

3hG

3hG

In this diagram, common multipliers for the terms in the first four
reflection are placed at the right while only the proper powers of B
are placed on the corresponding segments.

The solution is

7y = #x) + 38 [(atey) + (BP0 | /2-89)

¥, = Hi(x,) + 3ph BB*BS)G(xz)ﬂﬁQ*ah)E(x?)] / (1%

¥3 = 3pnG(x;) + 3ph lj(B2 + 8% G(xz) + (B + #) 3(::3)] / (1-6%)
= 3 [(198%) a(xy) + (8 + -P)B(x;) | / (1-%)

= 3mn(16%) [o(x;) + patxy) ]/(2-°)

19
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c. Five-span Beam with Prescribed Initial Height and Slope

tan™}
M n g .
hH#AG l \ JL "
(0) (5(\*3'1) Ay ”}f(hah)e bsh3n)e
9 8 7 ) 5 ) -
(1) ( P B B B (A+3h)G
10 11 12 13 14 "
() \| & | & | & | ¢ | B (xe3n)o
(3) ; 16 15 ) \o30)E
z P p (\+3n)0
|
Figure 12
The zerot’h order curve shown satisfies left end boundary conditions;

hence only two reflections, curves 1 and 2, need be considered to get the
first terms of the infinite series (geametrical) and hence to obtain the
exact solution.

For the S span beam shown:

yy = B + )G + B(A+3n) [ﬂ9G + pe'é:]

Yp = B(A30)G + B(A*30) I:pmc + 576:] /(1-8%0) = +p(a+3n) |G + 373] /(1-8%0)
73 = 8 (w3n) [0 + 8% | / 1-p10)

y, = B(M3n) [:ﬂzG + BgG] / (1-*)

T = B0v3n) [}26 . p%] /(1-6*°)

20
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REFLECTION FROM SIMPLY-SUPPORTED END

curvature = 0

mG f( curvature y"sk

(0)

B

f curvature = =k

(1)

Figure 13

Suppose the zoroth order approximation ends with the terms mG, and
the reflection curve 1 ends with the terms uG; then in order that the
suin of curves O and 1 satisfy the boundary condition y'' = 0, we must
have

mG'! (1)4‘,1}: 1(1)=0

n(6y3 - 6-2y3) ¢ u(-6V3*+6+LY3-6) =0

Therefors b = + k(end)/2 F

- (h/?- 6)m/2y3 = (2 -/ 3)m = -pn

Theorem: The reflectio
where k 1s the cfrvature at thes ri o
If the right of the zero order curve is mG, then the right end of the
TeTlection curve 1s (-mpG). The reflection from a simply supported end
Is with no change in sf% 0 .x; since -B is Fﬂtive. ¢. same theorem
holds at a simglg gupporte end, with the words left and right and
8 symbols G an interchanged. ‘ .
th

As a consequence, if the zero™ order approximation ends in a
multiple of B (at the left) or a multiple of @ (on the right), the exact
solution has twice the end slope of ﬂ;e gzero  approximation.

The same principle of multiplying by -p instead of by B holds, of
course, for all the infinite series of reflections needed in a finite
beam with pin-supported (simply supported) ends.

22
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See Fig. 1L for an example of a 3-span beam with the left end pin-
connected and the right end fixed,

(0)

(1)

(2)

(3)

(L)

(5)

(6)

(7

SR

W hH
K 3gh0

1 B p2

3 2 B
5 b 53
_ph -ps _p6
i 7 8
-¢ -8 -g"
-39

Figure 14
22

common

r "maltipliers

n(6-3{3)6
3ph0

h(6-3 {3)0
3phé

h(6-3 {3)a
3phG

n(6-3 {3)a




y, =Hle(6-3)/3)n Bl-p" o B2 o L )oud -ptlept -...)J

+3ph [(g3 oap?S -...)e(pb-pl0p26 -...)]

- We(6=3 \/)n(0+p7B)/(1+85)+38n(p 780 l0) /(1085

Again the first four reflection curves age enough, but the geometric
series are alternatin;swith the ratio -p¥; hence their first temms
must be divided by lepf~ to obtain their sums,

TURNER L. SMITH
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